Suppression of collisional shifts in a strongly interacting lattice clock.

نویسندگان

  • Matthew D Swallows
  • Michael Bishof
  • Yige Lin
  • Sebastian Blatt
  • Michael J Martin
  • Ana Maria Rey
  • Jun Ye
چکیده

Optical lattice clocks with extremely stable frequency are possible when many atoms are interrogated simultaneously, but this precision may come at the cost of systematic inaccuracy resulting from atomic interactions. Density-dependent frequency shifts can occur even in a clock that uses fermionic atoms if they are subject to inhomogeneous optical excitation. However, sufficiently strong interactions can suppress collisional shifts in lattice sites containing more than one atom. We demonstrated the effectiveness of this approach with a strontium lattice clock by reducing both the collisional frequency shift and its uncertainty to the level of 10(-17). This result eliminates the compromise between precision and accuracy in a many-particle system; both will continue to improve as the number of particles increases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolved atomic interaction sidebands in an optical clock transition.

We report the observation of resolved atomic interaction sidebands (ISB) in the (87)Sr optical clock transition when atoms at microkelvin temperatures are confined in a two-dimensional optical lattice. The ISB are a manifestation of the strong interactions that occur between atoms confined in a quasi-one-dimensional geometry and disappear when the confinement is relaxed along one dimension. The...

متن کامل

Precision measurement of fermionic collisions using an 87Sr optical lattice clock with 1 x 10(-16) inaccuracy.

We describe recent progress on the JILA Sr optical frequency standard, which has a systematic uncertainty at the 10(¿16) fractional frequency level. The dominant contributions to the systematic error are from blackbody radiation shifts and collisional shifts. We discuss the blackbody radiation shift and propose measurements and experimental protocols that should reduce its systematic contributi...

متن کامل

Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons.

We have quantified collisional losses, decoherence and the collision shift in a one-dimensional optical lattice clock on the highly forbidden transition (1)S(0)-(3)P(0) at 698 nm with bosonic (88)Sr. We were able to distinguish two loss channels: inelastic collisions between atoms in the upper and lower clock state and atoms in the upper clock state only. Based on the measured coefficients, we ...

متن کامل

Spin waves and collisional frequency shifts of a trapped-atom clock.

We excite spin waves with spatially inhomogeneous Ramsey pulses and study the resulting frequency shifts of a chip-scale atomic clock of trapped 87Rb. The density-dependent frequency shifts of the hyperfine transition simulate the s-wave collisional frequency shifts of fermions, including those of optical lattice clocks. As the spin polarizations oscillate in the trap, the frequency shift rever...

متن کامل

Cold-collision-shift cancellation and inelastic scattering in a Yb optical lattice clock

Recently, p-wave cold collisions were shown to dominate the density-dependent shift of the clock transition frequency in a 171Yb optical lattice clock. Here we demonstrate that by operating such a system at the proper excitation fraction, the cold-collision shift is canceled below the 5 × 10−18 fractional frequency level. We report inelastic two-body loss rates for P0 -P0 and S0 -P0 scattering....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 331 6020  شماره 

صفحات  -

تاریخ انتشار 2011